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The most direct route

What is the minimum number of flight
segments to get from Hamburg to Moscow?
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Paths and lengths

Length of the path L(P) is the number of
edges in the path.
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Distances

The distance between two vertices is the
length of the shortest path between them.
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Breadth-first search
BFS(G, S)

for all ue V:
dist[u] < oo
dist[S] <+ 0
Q < {S} {queue containing just S}
while @ is not empty:
u < Dequeue(Q)
for all (u,v) € E:
if dist[v] = oo:
Enqueue(Q, v)
dist[v] + dist[u] + 1



Running time
Lemma
The running time of breadth-first search is

O(|E[ + |[V]).
Proof



Running time
Lemma

The running time of breadth-first search is

O(|E[ + |[V]).
Proof

m Each vertex is enqueued at most once



Running time
Lemma
The running time of breadth-first search is
O(IE[ + [VI).
Proof

m Each vertex is enqueued at most once

m Each edge is examined either once (for
directed graphs) or twice (for undirected
graphs) (]
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Reachability
Definition
Node u is reachable from node S if there is a
path from S to u

Lemma

Reachable nodes are discovered at some
point, so they get a finite distance estimate
from the source. Unreachable nodes are not
discovered at any point, and the distance to
them stays infinite.



Proof
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Proof

Vo u

Vi

S

m u — first unreachable discovered
m u was discovered while processing v

m u is reachable through v O



Order Lemma

Lemma

By the time node v at distance d from S is
dequeued, all the nodes at distance at most
d have already been discovered (enqueued).
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Correct distances

Lemma

When node v is discovered (enqueued),
dist[u] is assigned exactly d(S, u).



Correct distances

Proof

m Use mathematical induction
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Correct distances

Proof

m Use mathematical induction

m Base: when S is discovered, dist[S] is
assigned 0 = d(S, S)

m Inductive step: suppose proved for all
nodes at distance < k from S — prove
for nodes at distance k + 1



Correct distances
Proof

m Take a node v at distance kK + 1 from S



Correct distances
Proof

m Take a node v at distance kK + 1 from S

m v was discovered while processing u



Correct distances
Proof

m Take a node v at distance kK + 1 from S

m v was discovered while processing u

md(S,v)<d(S,u)+1=d(S,u) >k



Correct distances
Proof

m Take a node v at distance k + 1 from S
m v was discovered while processing u
md(S,v)<d(S,u)+1=d(S,u) >k

m v is discovered after u is dequeued, so
d(S,u) <d(S,v)=k+1



Correct distances
Proof

Take a node v at distance kK + 1 from S
v was discovered while processing u
d(S,v) <d(S,u)+1=d(S,u) >k
v is discovered after u is dequeued, so
d(S,u) <d(S,v)=k+1

m So d(S,u) =k, and

dist[v] < dist[u] + 1 =k + 1 (]



Queue property

Queue: |d|d|d|..|d|dd+1d+1...d+1

Lemma

At any moment, if the first node in the
queue is at distance d from S, then all the
nodes in the queue are either at distance d
from S or at distance d + 1 from S. All the
nodes in the queue at distance d go before
(if any) all the nodes at distance d + 1.



Queue property
Proof

m All nodes at distance d were enqueued
before first such node is dequeued, so
they go before nodes at distance d + 1



Queue property
Proof

m All nodes at distance d were enqueued
before first such node is dequeued, so
they go before nodes at distance d + 1

m Nodes at distance d — 1 were enqueued
before nodes at d, so they are not in the
queue anymore



Queue property
Proof

m All nodes at distance d were enqueued
before first such node is dequeued, so
they go before nodes at distance d + 1

m Nodes at distance d — 1 were enqueued

before nodes at d, so they are not in the
queue anymore

m Nodes at distance > d + 1 will be
discovered when all d are gone O
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Lemma

Shortest-path tree is indeed a tree, i.e. it
doesn’t contain cycles (it is a connected
component by construction).
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Constructing shortest-path tree
BFS(G, S)

for all ue V:
dist[u] < oo, prev[u] < nil
dist[S] < 0
Q < {S} {queue containing just S}
while @ is not empty:
u < Dequeue(Q)
for all (u,v) € E:
if dist[v] = oo:
Enqueue(Q, v)
dist|[v] < dist[u] + 1, prev|v] < u



Reconstructing Shortest Path

ReconstructPath(S, u, prev)

result < empty

while u#S:
result.append(u)
u < prev|u]

return Reverse(result)
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Conclusion

m Can find the minimum number of flight
segments to get from one city to another

m Can reconstruct the optimal path

m Can build the tree of shortest paths
from one origin

m Works in O(|E| + |V|)
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