Paths in Graphs:
Most Direct Route

Michael Levin

Higher School of Economics

Graph Algorithms
Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

@ Paths and Distances

Applications

https://commons.wikimedia.org/w/index.php?curid=15743307

eeeee

Applications

HHHHHHHH

https://commons.wikimedia.org/w/index.php?curid=15743307

Applications

Cancel
Keflavik
.\

Faroer AL,

Bergen sink1
\ ooy —>
'x o Moskau
Uetersen® Hamburg

10km

in 20min

https://commons.wikimedia.org/w/index.php?curid=15743307

Applications

Cancel

Keflavik
o,

Helsinki &
\ §e0E0) —> Pimorsky
~—— oy
\o Moskau g

%, P ®

Uetersen@ Hamburg

in 20min

Citibank
$5,025,406 5,000,000
End Start

Arbitrage profit
525,406

Deutsche Bank
SPde, = 0.8171

Exchange euros for pounds
e =Xlange cupos Torpounds

Crédit Agricole
£3,430311 5% = 11910 €4,085,500

By John Shandy - Own work, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=15743307

The most direct route

What is the minimum number of flight
segments to get from Hamburg to Moscow?

The most direct route

What is the minimum number of flight
segments to get from Hamburg to Moscow?

Keflavik

'\ SNk
k‘ | Helsinki
Bergen CISHK?
\ goroen) L)

— O
K ‘. Moskau

Uetersen Qtamburg

The most direct route

What is the minimum number of flight
segments to get from Hamburg to Moscow?

Keflavik

'\ SNk
k‘ | Helsinki
Bergen) CSHK!
\ goroen) L)

— O
‘. Moskau

) «/
s

Helsinki

Paris

Bergen Helsinki

Paris

Paris

Helsinki

Paris

Paths and lengths

Length of the path L(P) is the number of
edges in the path.

Paths and lengths

Length of the path L(P) is the number of
edges in the path.

Paths and lengths

Length of the path L(P) is the number of
edges in the path.

E /5 A

e

D C—B
L(D-E—-S—A-B)=4
L(D-S—-C—B)=3

Distances

The distance between two vertices is the
length of the shortest path between them.

E/S A
D C—B

Distances

The distance between two vertices is the
length of the shortest path between them.

/S A
-

£
|
D

d(D,B) =3

Distances

The distance between two vertices is the
length of the shortest path between them.

Distances

The distance between two vertices is the
length of the shortest path between them.

/]

> A

£

—_

Distances

The distance between two vertices is the
length of the shortest path between them.

E

/|

A

d(D,B) = 4

Distances

The distance between two vertices is the
length of the shortest path between them.

A

%

—_

d(D,B) = 4

Distances

The distance between two vertices is the
length of the shortest path between them.

i

> A

é

—_

Distances

E/. A
D C—B

Distance layers

A

A CDE

\/

B

Distance layers

A

1 ACDE

\/

2 B

0

Distance layers

A

VY

B
F

0

1

2

Distance layers

A

1 ACDE

2 \B//U
\

3 F

0

Distance layers

A

1 ACDE

\/ [

2 B-F

0

Distance layers

A

VY

B
F

0

1

2

Distance layers

A

VY

B
F

0

1

2

Distance layers

A

VY

B
F

0

1

2

Distance layers

)\

A
.

Distance layers

A

lACDE

Distance layers

)

lACDE

Distance layers

$
i

3 F

Outline

@ Breadth-first Search

Outline

©® Implementation and Analysis

Breadth-first search
BFS(G, S)

for all ue V:
dist[u] < oo
dist[S] <+ 0
Q < {S} {queue containing just S}
while @ is not empty:
u < Dequeue(Q)
for all (u,v) € E:
if dist[v] = oo:
Enqueue(Q, v)
dist[v] + dist[u] + 1

Running time
Lemma
The running time of breadth-first search is

O(|E[+ |[V]).
Proof

Running time
Lemma

The running time of breadth-first search is

O(|E[+ |[V]).
Proof

m Each vertex is enqueued at most once

Running time
Lemma
The running time of breadth-first search is
O(IE[+ [VI).
Proof

m Each vertex is enqueued at most once

m Each edge is examined either once (for
directed graphs) or twice (for undirected
graphs) (]

Outline

O Proof of Correctness

Reachability
Definition
Node u is reachable from node S if there is a
path from S to u

Lemma

Reachable nodes are discovered at some
point, so they get a finite distance estimate
from the source. Unreachable nodes are not
discovered at any point, and the distance to
them stays infinite.

Proof

sO

m u — reachable undiscovered closest to S

Proof

Vi

Vo u

Vi

S

m u — reachable undiscovered closest to S

mS—wv— - —vx— u— shortest path

Proof

Vi

Vo u

Vi

S

m u — reachable undiscovered closest to S
mS—wv— - —vx— u— shortest path

m u is discovered while processing vy

Proof

Vi

Vo u

Vi

S

m u — reachable undiscovered closest to S
mS—wv— - —vx— u— shortest path

m u is discovered while processing vy

Proof

Vi

Vo u

Vi

S

m u — reachable undiscovered closest to S
mS—wv— - —vx— u— shortest path

m u is discovered while processing vy

Proof

Vi

Vo u

Vi

S

m u — reachable undiscovered closest to S
mS—wv— - —vx— u— shortest path

m u is discovered while processing vy

Proof

Vi

Vo u

Vi

S

m u — reachable undiscovered closest to S
mS—wv— - —vx— u— shortest path

m u is discovered while processing vy

Proof

Vi

Vo u

Vi

S

m u — reachable undiscovered closest to S
mS—wv— - —vx— u— shortest path

m u is discovered while processing vy

Proof

5@

m u — first unreachable discovered

Proof

5@

m u — first unreachable discovered

m u was discovered while processing v

Proof

Vo u

Vi

S

m u — first unreachable discovered
m u was discovered while processing v

m u is reachable through v O

Order Lemma

Lemma

By the time node v at distance d from S is
dequeued, all the nodes at distance at most
d have already been discovered (enqueued).

Order Lemma Proof

u v
@ O
d d

Consider the first time the order was broken

Order Lemma Proof

u v
@ O
d d

Consider the first time the order was broken

d <d

Order Lemma Proof

u v
d d
u/
>d-—1

Consider the first time the order was broken

d <d

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken

d <d

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken
d<d =d-1<d-1,so Vv was
discovered before v’ was dequeued

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken
d<d =d-1<d-1,so Vv was
discovered before v’ was dequeued

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken
d<d =d-1<d-1,so Vv was
discovered before v’ was dequeued

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken
d<d =d-1<d-1,so Vv was
discovered before v’ was dequeued

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken
d<d =d-1<d-1,so Vv was
discovered before v’ was dequeued

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken
d<d =d-1<d-1,so Vv was
discovered before v’ was dequeued

Order Lemma Proof

>d—1 d—1

Consider the first time the order was broken
d<d =d-1<d-1,so Vv was
discovered before v’ was dequeued

Correct distances

Lemma

When node v is discovered (enqueued),
dist[u] is assigned exactly d(S, u).

Correct distances

Proof

m Use mathematical induction

Correct distances

Proof

m Use mathematical induction

m Base: when S is discovered, dist[S] is

assigned 0 = d(S, 5)

Correct distances

Proof

m Use mathematical induction

m Base: when S is discovered, dist[S] is
assigned 0 = d(S, S)

m Inductive step: suppose proved for all
nodes at distance < k from S — prove
for nodes at distance k + 1

Correct distances
Proof

m Take a node v at distance kK + 1 from S

Correct distances
Proof

m Take a node v at distance kK + 1 from S

m v was discovered while processing u

Correct distances
Proof

m Take a node v at distance kK + 1 from S

m v was discovered while processing u

md(S,v)<d(S,u)+1=d(S,u) >k

Correct distances
Proof

m Take a node v at distance k + 1 from S
m v was discovered while processing u
md(S,v)<d(S,u)+1=d(S,u) >k

m v is discovered after u is dequeued, so
d(S,u) <d(S,v)=k+1

Correct distances
Proof

Take a node v at distance kK + 1 from S
v was discovered while processing u
d(S,v) <d(S,u)+1=d(S,u) >k
v is discovered after u is dequeued, so
d(S,u) <d(S,v)=k+1

m So d(S,u) =k, and

dist[v] < dist[u] + 1 =k + 1 (]

Queue property

Queue: |d|d|d|..|d|dd+1d+1...d+1

Lemma

At any moment, if the first node in the
queue is at distance d from S, then all the
nodes in the queue are either at distance d
from S or at distance d + 1 from S. All the
nodes in the queue at distance d go before
(if any) all the nodes at distance d + 1.

Queue property
Proof

m All nodes at distance d were enqueued
before first such node is dequeued, so
they go before nodes at distance d + 1

Queue property
Proof

m All nodes at distance d were enqueued
before first such node is dequeued, so
they go before nodes at distance d + 1

m Nodes at distance d — 1 were enqueued
before nodes at d, so they are not in the
queue anymore

Queue property
Proof

m All nodes at distance d were enqueued
before first such node is dequeued, so
they go before nodes at distance d + 1

m Nodes at distance d — 1 were enqueued

before nodes at d, so they are not in the
queue anymore

m Nodes at distance > d + 1 will be
discovered when all d are gone O

Outline

@ Shortest-path Tree

Shortest-path tree

O—O—6 >

HFO OB
© B)
O—G—=H OO

Shortest-path tree

O—O—6 A

FOO®®
© B)
O—G—=H OO

Lemma

Shortest-path tree is indeed a tree, i.e. it
doesn’t contain cycles (it is a connected
component by construction).

Proof

Proof

Proof

m Only one outgoing edge from each node

Proof

m Only one outgoing edge from each node

Proof

m Only one outgoing edge from each node

Proof

m Only one outgoing edge from each node

Proof

m Only one outgoing edge from each node

m Distance to S decreases after going by
edge

Proof

m Only one outgoing edge from each node

m Distance to S decreases after going by
edge

Proof

m Only one outgoing edge from each node

m Distance to S decreases after going by
edge

Proof

m Only one outgoing edge from each node

m Distance to S decreases after going by
edge

Proof

m Only one outgoing edge from each node

m Distance to S decreases after going by
edge

Proof

m Only one outgoing edge from each node

m Distance to S decreases after going by
edge

Proof

m Only one outgoing edge from each node

m Distance to S decreases after going by
edge

Constructing shortest-path tree
BFS(G, S)

for all ue V:
dist[u] < oo, prev[u] < nil
dist[S] < 0
Q < {S} {queue containing just S}
while @ is not empty:
u < Dequeue(Q)
for all (u,v) € E:
if dist[v] = oo:
Enqueue(Q, v)
dist|[v] < dist[u] + 1, prev|v] < u

Reconstructing Shortest Path

ReconstructPath(S, u, prev)

result < empty

while u#S:
result.append(u)
u < prev|u]

return Reverse(result)

Conclusion

m Can find the minimum number of flight
segments to get from one city to another

Conclusion

m Can find the minimum number of flight
segments to get from one city to another

m Can reconstruct the optimal path

Conclusion

m Can find the minimum number of flight
segments to get from one city to another

m Can reconstruct the optimal path

m Can build the tree of shortest paths
from one origin

Conclusion

m Can find the minimum number of flight
segments to get from one city to another

m Can reconstruct the optimal path

m Can build the tree of shortest paths
from one origin

m Works in O(|E| + |V|)

	Paths and Distances
	Breadth-first Search
	Implementation and Analysis
	Proof of Correctness
	Shortest-path Tree

