
Paths in Graphs:

Most Direct Route

Michael Levin

Higher School of Economics

Graph Algorithms

Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

1 Paths and Distances

2 Breadth-�rst Search

3 Implementation and Analysis

4 Proof of Correctness

5 Shortest-path Tree

Applications

By John Shandy - Own work, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=15743307

Applications

By John Shandy - Own work, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=15743307

Applications

By John Shandy - Own work, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=15743307

Applications

By John Shandy - Own work, CC BY-SA 3.0

https://commons.wikimedia.org/w/index.php?curid=15743307

The most direct route

What is the minimum number of �ight

segments to get from Hamburg to Moscow?

The most direct route

What is the minimum number of �ight

segments to get from Hamburg to Moscow?

The most direct route

What is the minimum number of �ight

segments to get from Hamburg to Moscow?

Hamburg

Moscow

Ke�avik
Bergen

Paris

Helsinki

Faroer

Hamburg

Moscow

Ke�avik
Bergen

Paris

Helsinki

Faroer

Hamburg

Moscow

Ke�avik
Bergen

Paris

Helsinki

Faroer

Hamburg

Moscow

Ke�avik
Bergen

Paris

Helsinki

Faroer

Paths and lengths

Length of the path L(P) is the number of

edges in the path.

A

BC

SE

D

L(D − E − S − A− B) = 4

L(D − S − C − B) = 3

Paths and lengths

Length of the path L(P) is the number of

edges in the path.

A

BC

SE

D

L(D − E − S − A− B) = 4

L(D − S − C − B) = 3

Paths and lengths

Length of the path L(P) is the number of

edges in the path.

A

BC

SE

D

L(D − E − S − A− B) = 4

L(D − S − C − B) = 3

Distances

The distance between two vertices is the

length of the shortest path between them.

A

BC

SE

D

d(D,B) = 3

d(C ,A) = 2

Distances

The distance between two vertices is the

length of the shortest path between them.

A

BC

SE

D

d(D,B) = 3

d(C ,A) = 2

Distances

The distance between two vertices is the

length of the shortest path between them.

A

BC

SE

D

d(D,B) = 3

d(C ,A) = 2

Distances

The distance between two vertices is the

length of the shortest path between them.

A

BC

SE

D

d(D,B) = 4

d(C ,A) =∞

Distances

The distance between two vertices is the

length of the shortest path between them.

A

BC

SE

D

d(D,B) = 4

d(C ,A) =∞

Distances

The distance between two vertices is the

length of the shortest path between them.

A

BC

SE

D

d(D,B) = 4

d(C ,A) =∞

Distances

The distance between two vertices is the

length of the shortest path between them.

A

BC

SE

D

d(D,B) = 4

d(C ,A) =∞

Distances

A

BC

SE

D

S

Distance layers

S

CA D E

B

S

Distance layers

S

CA D E

B

S0

1

2

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2 F

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F3

Distance layers

S

CA D E

B

S0

1

2

F3

Outline

1 Paths and Distances

2 Breadth-�rst Search

3 Implementation and Analysis

4 Proof of Correctness

5 Shortest-path Tree

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S
0

1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S
0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S
0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S
0 1

11

1

1 1

2

2

2
2

2

2

2

2

2
2

2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S
0

1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S
0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S
0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S
0 1

11

1

1 1

1

2

2

2
2

2

2

2

2

2 2

2

∞

S

S
0

S
00

S
00 1

S
00 1

1

S
00 1

11

S
00 1

11

1

S
00 1

11

1

1

S
00 1

11

1

1 1

S
00 1

11

1

1 1

1

S
00 1

11

1

1 1

1

S
00 1

11

1

1 1

1 2

S
00 1

11

1

1 1

1 2

2

S
00 1

11

1

1 1

1 2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

S
00 1

11

1

1 1

1 2

2

2

1

S
00 1

11

1

1 1

1 2

2

2

1

S
00 1

11

1

1 1

1 2

2

2

1

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2
2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2
2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2
2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2
2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2
2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2
2

2

S
00 1

11

1

1 1

1 2

2

2

1

2
2

1

2

2

12

2 1

2
2

1

2

2

2

2

2
2

2

2

2

2

2
2

2

∞

Outline

1 Paths and Distances

2 Breadth-�rst Search

3 Implementation and Analysis

4 Proof of Correctness

5 Shortest-path Tree

Breadth-first search

BFS(G , S)

for all u ∈ V :

dist[u]←∞
dist[S]← 0

Q ← {S} {queue containing just S}
while Q is not empty:

u ← Dequeue(Q)
for all (u, v) ∈ E:
if dist[v] =∞:

Enqueue(Q, v)
dist[v]← dist[u] + 1

Running time
Lemma

The running time of breadth-�rst search is

O(|E | + |V |).

Proof

Each vertex is enqueued at most once

Each edge is examined either once (for

directed graphs) or twice (for undirected

graphs)

Running time
Lemma

The running time of breadth-�rst search is

O(|E | + |V |).

Proof

Each vertex is enqueued at most once

Each edge is examined either once (for

directed graphs) or twice (for undirected

graphs)

Running time
Lemma

The running time of breadth-�rst search is

O(|E | + |V |).

Proof

Each vertex is enqueued at most once

Each edge is examined either once (for

directed graphs) or twice (for undirected

graphs)

Outline

1 Paths and Distances

2 Breadth-�rst Search

3 Implementation and Analysis

4 Proof of Correctness

5 Shortest-path Tree

Reachability
Definition

Node u is reachable from node S if there is a

path from S to u

Lemma

Reachable nodes are discovered at some

point, so they get a �nite distance estimate

from the source. Unreachable nodes are not

discovered at any point, and the distance to

them stays in�nite.

Proof

S

u

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

v1

v2

vk

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

v1

v2

vk

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

v1

v2

vk

S

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

v1

v2

vk

S

v1

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

v1

v2

vk

S

v1

v2

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

v1

v2

vk

S

v1

v2

vk

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

v1

v2

vk

S

v1

v2

vk

u � reachable undiscovered closest to S

S − v1 − · · · − vk − u � shortest path

u is discovered while processing vk

Proof

S

u

u � �rst unreachable discovered

u was discovered while processing v

u is reachable through v

Proof

S

u

v

u � �rst unreachable discovered

u was discovered while processing v

u is reachable through v

Proof

S

u

v

v1

v2

u � �rst unreachable discovered

u was discovered while processing v

u is reachable through v

Order Lemma

Lemma

By the time node u at distance d from S is

dequeued, all the nodes at distance at most

d have already been discovered (enqueued).

Order Lemma Proof
u

d

v

d ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

Consider the �rst time the order was broken

d ′ ≤ d

⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

Consider the �rst time the order was broken

d ′ ≤ d

⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d

⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Order Lemma Proof
u

d

v

d ′

≥ d − 1

u′

d ′ − 1

v ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued

Correct distances

Lemma

When node u is discovered (enqueued),

dist[u] is assigned exactly d(S , u).

Correct distances

Proof

Use mathematical induction

Base: when S is discovered, dist[S] is

assigned 0 = d(S , S)

Inductive step: suppose proved for all

nodes at distance ≤ k from S → prove

for nodes at distance k + 1

Correct distances

Proof

Use mathematical induction

Base: when S is discovered, dist[S] is

assigned 0 = d(S , S)

Inductive step: suppose proved for all

nodes at distance ≤ k from S → prove

for nodes at distance k + 1

Correct distances

Proof

Use mathematical induction

Base: when S is discovered, dist[S] is

assigned 0 = d(S , S)

Inductive step: suppose proved for all

nodes at distance ≤ k from S → prove

for nodes at distance k + 1

Correct distances

Proof

Take a node v at distance k + 1 from S

v was discovered while processing u

d(S , v) ≤ d(S , u) + 1⇒ d(S , u) ≥ k

v is discovered after u is dequeued, so

d(S , u) < d(S , v) = k + 1

So d(S , u) = k , and

dist[v]← dist[u] + 1 = k + 1

Correct distances

Proof

Take a node v at distance k + 1 from S

v was discovered while processing u

d(S , v) ≤ d(S , u) + 1⇒ d(S , u) ≥ k

v is discovered after u is dequeued, so

d(S , u) < d(S , v) = k + 1

So d(S , u) = k , and

dist[v]← dist[u] + 1 = k + 1

Correct distances

Proof

Take a node v at distance k + 1 from S

v was discovered while processing u

d(S , v) ≤ d(S , u) + 1⇒ d(S , u) ≥ k

v is discovered after u is dequeued, so

d(S , u) < d(S , v) = k + 1

So d(S , u) = k , and

dist[v]← dist[u] + 1 = k + 1

Correct distances

Proof

Take a node v at distance k + 1 from S

v was discovered while processing u

d(S , v) ≤ d(S , u) + 1⇒ d(S , u) ≥ k

v is discovered after u is dequeued, so

d(S , u) < d(S , v) = k + 1

So d(S , u) = k , and

dist[v]← dist[u] + 1 = k + 1

Correct distances

Proof

Take a node v at distance k + 1 from S

v was discovered while processing u

d(S , v) ≤ d(S , u) + 1⇒ d(S , u) ≥ k

v is discovered after u is dequeued, so

d(S , u) < d(S , v) = k + 1

So d(S , u) = k , and

dist[v]← dist[u] + 1 = k + 1

Queue property

Queue: d d d . . . d d d + 1d + 1. . . d + 1

Lemma

At any moment, if the �rst node in the

queue is at distance d from S , then all the

nodes in the queue are either at distance d

from S or at distance d + 1 from S . All the

nodes in the queue at distance d go before

(if any) all the nodes at distance d + 1.

Queue property
Proof

All nodes at distance d were enqueued

before �rst such node is dequeued, so

they go before nodes at distance d + 1

Nodes at distance d − 1 were enqueued

before nodes at d , so they are not in the

queue anymore

Nodes at distance > d + 1 will be

discovered when all d are gone

Queue property
Proof

All nodes at distance d were enqueued

before �rst such node is dequeued, so

they go before nodes at distance d + 1

Nodes at distance d − 1 were enqueued

before nodes at d , so they are not in the

queue anymore

Nodes at distance > d + 1 will be

discovered when all d are gone

Queue property
Proof

All nodes at distance d were enqueued

before �rst such node is dequeued, so

they go before nodes at distance d + 1

Nodes at distance d − 1 were enqueued

before nodes at d , so they are not in the

queue anymore

Nodes at distance > d + 1 will be

discovered when all d are gone

Outline

1 Paths and Distances

2 Breadth-�rst Search

3 Implementation and Analysis

4 Proof of Correctness

5 Shortest-path Tree

Shortest-path tree

A

BC

SE

D

F G H

S

CA D

F

E

B

G H

Shortest-path tree

A

BC

SE

D

F G H

S

CA D

F

E

B

G H

Lemma

Shortest-path tree is indeed a tree, i.e. it

doesn't contain cycles (it is a connected

component by construction).

Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

d

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

d

≤ d − 1

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

≤ d − 3

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

≤ d − 3
≤ d − 4

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

≤ d − 3
≤ d − 4

≤ d − 5

Only one outgoing edge from each node

Distance to S decreases after going by

edge

Constructing shortest-path tree

BFS(G , S)

for all u ∈ V :

dist[u]←∞, prev[u]← nil

dist[S]← 0

Q ← {S} {queue containing just S}
while Q is not empty:

u ← Dequeue(Q)
for all (u, v) ∈ E:
if dist[v] =∞:

Enqueue(Q, v)
dist[v]← dist[u] + 1, prev[v]← u

Reconstructing Shortest Path

ReconstructPath(S , u, prev)

result ← empty

while u ̸= S:

result.append(u)

u ← prev[u]

return Reverse(result)

Conclusion

Can �nd the minimum number of �ight

segments to get from one city to another

Can reconstruct the optimal path

Can build the tree of shortest paths

from one origin

Works in O(|E | + |V |)

Conclusion

Can �nd the minimum number of �ight

segments to get from one city to another

Can reconstruct the optimal path

Can build the tree of shortest paths

from one origin

Works in O(|E | + |V |)

Conclusion

Can �nd the minimum number of �ight

segments to get from one city to another

Can reconstruct the optimal path

Can build the tree of shortest paths

from one origin

Works in O(|E | + |V |)

Conclusion

Can �nd the minimum number of �ight

segments to get from one city to another

Can reconstruct the optimal path

Can build the tree of shortest paths

from one origin

Works in O(|E | + |V |)

	Paths and Distances
	Breadth-first Search
	Implementation and Analysis
	Proof of Correctness
	Shortest-path Tree

